* Chapter 13

Gas Laws
*The Nature of Gases: Physical Properties of gases:
*Gases have mass: an empty basketball weighs less than a full one
*It is easy to compress gas: This is why it is used in air bags and shock absorbers

* Gases fill their container completely: Balloons get bigger when you blow them up

$$
\begin{array}{r}
\text { * 13-1 A Model to Explain Gas } \\
\text { Behaxior }
\end{array}
$$

*Gases can move through each other rapidly and this is known as diffusion. (Explains smells traveling through the air)
*Gases exert pressure: explains why balloons keep their shape

> *Model of gases
*Gas properties are explained by the Kinetic Molecular Model that describes the behavior of the particles that make up a gas.

> *Kinetic Molecylar Theory
*all gas consists of small particles, each which has a mass.
*the particles spread apart by relatively large distances.
*the particles are in constant, rapid, random motion.
*Gases exert pressure because their particles frequently collide with the walls of the container in perfectly elastic collisions. (no energy of motion is lost)

$$
\begin{aligned}
& \text { *Kinetic Molecular } \\
& \text { Theory }
\end{aligned}
$$

*The kinetic energy of gas particles depends on the temp of the gas.

* Gas particles exert no attractive forces on one another.

> *Kinetic Molecylar Theory
*To study a gas sample and make predictions about its behavior under changed conditions, it is important to be familiar with four measurable variables:

* $\mathrm{n}=$ amount of gas (measured in g or moles)
* V = volume (measured in mL , L etc.)
* $\mathrm{T}=$ temperature (measured in ${ }^{\circ} \mathrm{C}$ but converted to K by ${ }^{\circ} \mathrm{C}+273=\mathrm{K}$)
* $\mathrm{P}=$ pressure ...

*13-2 Measuring Gases

*Why doesn't a balloon burst or deflate?
*Because the gas in the balloon is pushing on the inside and the atmosphere is pushing on the outside of the balloon
*Gas pressure - determined by units of force per unit area
*SI unit of pressure $=$ pascal (Pa)

* Other pressure units include atmospheres (atm), Torricellis (torr), and mm Hg
$\underbrace{\text { K. } 1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \text { torr }=760 \mathrm{mmHg} B} \begin{aligned} & \text { Standard } \\ & \text { pressures }\end{aligned}$
*Pressyre (P)
*Atmospheric pressure - pressure of air due to the pull of gravity on gas particles (because they have mass)
*Measured with a barometer
*U shaped glass tube upside down in pool of mercury. The height of the mercury tells you how much pressure is being exerted on the open reservoir of mercury.

*Atmospheric presssure

*Manometer - used to measure the pressure of a gas in a closed container.

* The gas inside a basketball pushes the mercury in a manometer to a height that is 15 mm higher on the closed side. The atmospheric pressure is measured at 750 mmHg .
$1^{\text {st }}$ the pressure inside the basketball is LOWER than the atmospheric pressure
$2^{\text {nd }}$ because the pressure is LOWER subtract the height of the gas side from the atmospheric pressure

$$
750-15=735 \mathrm{mmHg}
$$

$3^{\text {rd }}$ convert to atm
$735 \mathrm{mmHg} x \frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}=0.97 \mathrm{~atm}$

*Manometer problems

*WS 13-2 PP do \#10-15

*Try some more...

* 13-3 The Gas Laws

*Boyle's Law - The pressure and volume of a sample of gas at constant temperature are inversely proportional to each other or

Ex. WS13-3 PP \#1
*Charles's Law - At constant pressure, the volume of a constant amount of gas is directly proportional to its Kelvin temperature.

*Ex. WS13-3 PP \#6

*Charles Law

*Guy Lusaac's Law - at a constant volume and a fixed amount of gas the pressure and Kelvin temperature of a gas will be directly related.

*Guy-Lussaac’s Law

*Ex. If an aerosol can with a pressure of 1 atm and a temperature of $25^{\circ} \mathrm{C}$ is thrown into a fire and the pressure increases to 2.5 atm . What is the temperature of the gas at this pressure?

$$
\begin{array}{ll}
\mathrm{T}_{1}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K} & \mathrm{~T}_{2}=\mathrm{X} \\
\mathrm{P}_{1}=1 \mathrm{~atm} & \mathrm{P}_{2}=2.5 \mathrm{~atm}
\end{array}
$$

$$
\begin{array}{r}
T_{2}=\underline{P}_{2} \underline{I}_{1}-P_{1}
\end{array}
$$

$T_{2}=(2.5 \mathrm{~atm})(298 \mathrm{~K})$
1 atm
$\mathrm{T}_{2}=745 \mathrm{~K}$ or $472{ }^{\circ} \mathrm{C}$

* A gas measures 25.0 mL at 735 mmHg , what will its volume be at 750 mmHg ?
* Answer: 24.5 mL
* A 50.0 mL volume of gas is measured at $20^{\circ} \mathrm{C}$. What will the volume of the gas be at $40^{\circ} \mathrm{C}$?
* Answer 53.4 mL
* A flask containing hydrogen gas has a pressure of 22.5 kPa and a temperature of $25^{\circ} \mathrm{C}$. What will the pressure be if the gas is heated to $38^{\circ} \mathrm{C}$?
* Answer: 23.5 kPa
*When all but amount of gas changes, the three changing variables are related in the same ways as in Boyle's, Charles', and Guy-Lusaac's laws...so they are combined to be the combined gas law...

*Combined Gas Law

*WS13-4 \#2

$$
\begin{array}{ll}
{ }^{*} \mathrm{~V}_{1}= & \mathrm{V}_{2}= \\
{ }^{*} \mathrm{~T}_{1}= & \mathrm{T}_{2}= \\
{ }^{*} \mathrm{P}_{1}= & \mathrm{P}_{2}=
\end{array}
$$

*Example

*Avogadro's Law - equal volumes of gases at the same temperature and pressure contain an equal number of particles
*Important points
*All gases show the same physical behavior
*A gas with a larger volume consist of a greater number of particles.
*The volume of one mole of a gas is called the molar volume (@ STP...standard temperature and pressure)...22.4 L

* Ayogadro's Law: The AmountYolume Relationship

*The sum of the partial pressures of all the gases in a gas mixture is equal to the total pressure of the gas mixture.
${ }^{*} \mathrm{P}_{\mathrm{T}}=\mathrm{p}_{\mathrm{a}}+\mathrm{p}_{\mathrm{b}}+\mathrm{p}_{\mathrm{c}}+\ldots$
${ }^{*} \mathrm{P}_{\mathrm{T}}$ is the total pressure

$$
\begin{aligned}
& \text { *Dalton's Lawx of Partial } \\
& \text { Pressures }
\end{aligned}
$$

*Ex. What is the atmospheric pressure if the partial pressure of $\mathrm{N}_{2}, \mathrm{O}_{2}$, and Ar are $604.5 \mathrm{mmHg}, 162.8 \mathrm{mmHg}$, and 0.5 mmHg
$P_{T}=604.5 \mathrm{mmHg}+162.8 \mathrm{mmHg}+0.5 \mathrm{mmHg}$
$P_{T}=767.8 \mathrm{~mm} \mathrm{Hg}$

*Example

*The ideal gas equation describes the physical behavior of an ideal gas in terms of the pressure, volume, temperature, and the number of moles of a gas. *Ideal gas - a gas that is described by the kinetic-molecular theory
*Real Gas - behave like ideal gases except at low temperatures and high pressures.
*13-4 The Ideal Gas Law
*This is a summary of the gas laws from the previous section.
*PV = nRT
$\mathrm{P}=$ gas pressure (must match R)
$\mathrm{V}=$ gas volume (must be in L)
$\mathrm{n}=$ the number of moles of gas
$\mathrm{R}=$ ideal gas constant (must match P)
$\mathrm{T}=$ temperature of a gas (must be in K)

*The Ideal Gas Equation

${ }^{*}$ Ex. How many moles of a gas at $100^{\circ} \mathrm{C}$ does it take to fill a $1.00-\mathrm{L}$ flask o a pressure of 1.50 atm?

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
\begin{aligned}
& n=\frac{P V}{R T} \\
& n=\frac{(1.5 \mathrm{~atm})(1.00 \mathrm{~L})}{\left(0.0821 \mathrm{~atm}^{*} \mathrm{~L} / \mathrm{Mol}^{*} \mathrm{~K}\right)(373 \mathrm{~K})}=0.0490 \mathrm{~mol}
\end{aligned}
$$

*Example

